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Abstract
Mathematical modeling of pancreatic beta cells has contributed significantly to the understanding of the 
mechanisms involved in glucose-stimulated insulin secretion (GSIS). Early models of insulin secretion built in 
the 1970s were phenomenological with little biological foundation for the proposed mechanisms. In the 1980s, 
models focused on identifying the regulation of bursting electrical activity known to be important for insulin 
secretion. The main result was to reject proposed mechanisms as new data emerged, but important results of 
the role of cell-to-cell coupling were also established. New models have been proposed that provide possible 
explanations for the occurrence of various patterns of bursting and calcium oscillations. In addition, modeling 
has played an important role in comparing competing effects of calcium on both NADH and adenosine  
3’-5’-cyclic monophosphate levels. Models including modern cell biological results of the regulation of insulin 
containing granules and cell heterogeneity have appeared, providing updated versions of the early models 
proposed in the 1970s. These models, when coupled to electrophysiological- and calcium-based ones, have the 
prospect to aid in understanding the overall picture of GSIS. In addition, they might be useful for estimating 
in vivo beta-cell functioning. Beta-cell modeling will likely move closer to clinical applications, where it can be 
expected to play an important role, as it has and will, in understanding the complex oscillatory phenomena 
observed in beta cells and islets.
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SYMPOSIUM

The Beta Cell

The pancreatic beta cells are responsible for the 
secretion of insulin in response to elevated plasma 
glucose levels, and the malfunction of these cells is a 
major contributor to the development of diabetes. The 
beta cells are, however, social cells living in micro-organs 
called islets of Langerhans, and coupling between beta 
cells within islets is important for the proper function of 
beta cells.1

The major pathway of glucose-stimulated insulin 
secretion (GSIS) involves metabolism of the sugar, which 
raises the intracellular adenosine-5’-triphosphate (ATP) 
concentration and lowers adenosine diphosphate (ADP) 
concentration. The higher ATP-to-ADP ratio closes ATP-
sensitive potassium [K(ATP)] channels in the plasma 
membrane, which depolarizes the cell and triggers 
electrical activity. Voltage-sensitive calcium channels 
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contribute to the electrical pattern, and when they 
are open, calcium flows into the cell, where it triggers 
the fusion of insulin-containing granules with the 
plasma membrane. This allows insulin to escape to 
the extracellular space and eventually enter the blood 
stream. Besides this “triggering pathway,” another less 
understood “amplifying pathway” modifies the amount 
of insulin that is secreted in response to a glucose 
challenge.2 Insulin is released in distinct pulses with a 
period of ~5 min,3 probably as a result of oscillations in 
beta-cell metabolism, membrane potential, and calcium 
levels.4

Modeling of Bursting Electrical Activity
The central role of the electrophysiology of the beta cells 
has led not only biologists, but also mathematicians to 
study this particular part of the triggering pathway. 
Due to the complex bursting patterns exhibited by the 
membrane potential (Figure 1), electrical activity in 
the beta cells has provided interesting mathematical 

problems to be analyzed in addition to understanding its 
role in GSIS. The bursting electrical behavior in beta cells 
consists in an alternating pattern between a quiescent, 
hyperpolarized phase and an active phase, where voltage 
spikes depart from an elevated plateau. These “square-
wave” oscillations are paralleled by periodic modulations 
of [Ca2+]i and insulin secretion, since calcium, the trigger 
of insulin release, flows into the cytoplasm during the 
active phase and is pumped out of the cell during the 
silent phase.

All current existing mathematical models are basically 
modifications of the first model of bursting patterns 
typically observed in islets with a period of 10–30 s 
(Figure 1A), by Chay and Keizer,5 constructed from 
ideas by Atwater et al.6 As first analyzed by Rinzel,7 
the mechanism underlying bursting is a separation of 
timescales, where a fast subsystem consisting of the 
membrane potential and delayed rectifier potassium 
channels creates the spikes during the active phase, while 
one or more slow variables are responsible for switching 

Figure 1. Typical patterns of (A–C) bursting electrical activity and (D–F) calcium oscillations observed in beta cells located in islets. These patterns 
were simulated using the model by Bertram et al.,22 which can produce (from left to right) either intermediate bursting (fast Ca2+ oscillations), 
compound bursting (mixed Ca2+ oscillations), or slow, glycolytic bursting (slow Ca2+ oscillations).



14

Contributions of Mathematical Modeling of Beta Cells to the Understanding of Beta-Cell Oscillations and Insulin Secretion Pedersen

www.journalofdst.orgJ Diabetes Sci Technol Vol 3, Issue 1, January 2009

that ion channel fluctuations are likely to disrupt slow 
oscillations driven by a phantom burster mechanism and 
change them into a rather fast pattern.25 Nonetheless, the 
phantom mechanism, a result of mathematical modeling, 
has suggested a plausible way of obtaining bursting 
behavior with the right timescale, even though [Ca2+]i is 
acting too fast.

The Role of Coupling
The difference between single, isolated beta cells and beta 
cells in situ coupled to their neighbors within the islet 
has been another area where mathematical modeling has 
tested and provided possible explanations. Atwater et al.26  
suggested that stochastic fluctuations (noise) of single 
ion channels can disrupt the underlying bursting 
behavior in single cells, but when the cells are coupled 
within the islets, the noise intensity is reduced because 
of the effective sharing of the channels between cells 
due to electrical coupling by gap junctions. Numerical 
simulations of stochastic versions of the early bursting 
models confirmed the possibility of the “channel-sharing 
hypothesis,”27,28 and I helped to confirm these findings 
analytically.29 For the phantom burster model, it was 
found that noise has a much stronger effect than for 
bursters with only one slow variable and, in particular, 
that slow bursting in single cells is unlikely to be driven 
by a phantom burster mechanism,25 a result that would 
be hard to discover without a mathematical model and 
analysis.

Another possible explanation for the emergent 
intermediate bursting seen in islets is the so-called 

“heterogeneity hypothesis.”30 Since the parameters of 
model bursters need to be finely tuned in order to burst, 
it was suggested that most cells have parameters that 
fall slightly outside the bursting region, and they will 
therefore either be silent or spike continuously. When 
coupled, the cells will behave as if they had some average 
parameter values, often within the region of bursting. 
Hence the coupled cell cluster would burst, although 
very few of the isolated cells did. The heterogeneity 
hypothesis was later extended to phantom bursting.31 
Here the mathematical modeling was also used to 
support and formulate the basic idea, which was recently 
used to interpret experimental data.32

Modeling Metabolism
Another candidate, rather than feedback by Ca2+ or 
another slow variable, for a pacemaker of slow bursting, 
slow calcium oscillations, and pulsatile insulin secretion 
is an endogenous glycolytic oscillator.33,34 Oscillations 

between active and silent phases. The first proposal for 
the slow variable was [Ca2+]i,5,6 which modified a calcium-
sensitive potassium current [IK(Ca)].

Simulations predicted that the resulting calcium 
pattern would be a sawtooth-shaped oscillation, but 
when it became experimentally possible to measure 
[Ca2+]i, the observed pattern was found to be closer 
to a square wave than a sawtooth.8 The slow variable 
was therefore unlikely to be intracellular calcium. In 
this way, the mathematicians returned the question 
to the biologists: if not [Ca2+]i and IK(Ca) , then what is 
driving bursting with a period of tens of seconds? The 
resulting electrophysiological studies revealed another 
calcium-sensitive potassium channel that activated on 
a slower timescale.9,10 However, my own (unpublished) 
observations and simulations done by other groups  
(e.g., Reference 11) have revealed that the electro-
physiological components and [Ca2+]i are insufficient in 
reproducing bursting behavior with a timescale of tens 
of seconds as observed in beta cells located in islets. 
I refer the reader to review articles for a fuller account of 
the history of the role of [Ca2+]i in beta-cell bursting.12,13

Chay14,15 introduced the calcium concentration in the 
endoplasmic reticulum (ER) as a second slow variable 
in addition to [Ca2+]i. The concept of two slow variables 
was then generalized in the “phantom burster” idea by 
Bertram et al.,16 where is was further analyzed how the 
interaction of a variable with a timescale of a few seconds 
(here [Ca2+]i) with another variable with a timescale of 
minutes can lead to the appearance of bursts with a 
period of tens of seconds as seen in islets, although no 
variables are acting on this timescale (hence “phantom”).  
It should be remarked that the ER calcium concentration 
is unlikely to be the (only) second slow variable, since 
preventing filling of the ER does not interrupt or modify 
[Ca2+]i oscillations substantially, though a slightly different 
profile is observed.17 Adenosine triphosphate (or the ATP/
ADP ratio) acting on K(ATP) channels18,19 and sodium20 
have been suggested to be other slow variables. Bertram 
and Sherman13 give further details on these aspects.

By varying the relative strength of the two slow processes, 
bursting with a period ranging from a few seconds to 
several minutes can be observed. This was hypothesized16 
to account for the difference between isolated beta cells, 
which often spike or burst with a period of less than 
a couple of seconds,21 the intermediate tens of seconds 
islet bursting, and the very slow oscillations seen both 
in membrane potential and calcium recordings from 
both islets and isolated cells.22–24 However, it was shown 
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in extracellular glucose levels and oxygen tension,33 
reduced nicotinamide adenine dinucleotide (phosphate) 
[NAD(P)H] concentrations,35 and ATP levels36 have been 
observed and are suggestive of a metabolic pacemaker. 
However, when calcium influx is interrupted, these 
oscillations can disappear,35,37 which could suggest that 
periodic modulation of metabolic variables is driven 
by calcium oscillations. On the other hand, oscillations 
in ATP have been observed in calcium-free media.38 
Stronger evidence against a glycolytic oscillator is the fact 
that mitochondrial substrates, which bypass glycolysis, 
can produce slow calcium oscillations23 and that islets 
with very low levels of the muscle form of the enzyme 
phosphofructokinase (PFK), believed to be responsible for 
the creation of oscillations in glycolysis, also exhibit slow 
calcium oscillations and pulsatile insulin secretion.39 
However, these observations do not rule out the 
possibility of an oscillator with mitochondrial origin.40

Bertram et al.22,41,42 suggested that beta cells possess both 
a glycolytic and a calcium-driven (phantom) oscillator, 
which communicate through the mitochondria and ATP 
levels. Adenosine triphosphate inhibits PFK and blocks 
K(ATP) channels, while pumping Ca2+ lowers the ATP 
concentration. Depending on the parameters, this “dual 
oscillator”4 model can produce various kinds of bursting. 
Slow “glycolytic” bursting (Figure 1C) occurs when 
glycolysis is oscillatory, and the calcium system is either 
stable (at fixed glycolytic input) or bursts with a period 
close to that of the glycolytic oscillator. Intermediate 
bursting with a tens-of-seconds period appears when 
glycolysis is stable, and the calcium system is oscillatory 
(Figure 1A). Finally, the model can reproduce so-
called compound bursting (Figure 1B), where bursts of 
intermediate period appear periodically interspersed 
with silent phases with a period of minutes. This occurs 
when both the glycolytic and the calcium subsystems are 
oscillatory. Glycolysis is then responsible for the slow 
modulation of the bursting system.4,22 All these patterns 
have been observed experimentally.22 Thus, using a 
mathematical model, it has been possible to unify the 
two proposed burst mechanisms and explain complex 
patterns such as compound bursting, which are hard to 
understand from a single underlying burst mechanism.

By including noise in the model,25 it was shown that 
in contrast to bursting driven by electrophysiological 
mechanisms, glycolytic bursting is stable to ion channel 
fluctuations. This suggests that the slow (~4 min) bursting 
activity and calcium oscillations observed in single 
cells24,43 is indeed driven by a metabolic oscillator. It 
also provides an explanation for the fact that compound 

bursting is mostly seen in islets. The individual bursts 
driven by calcium feedback are disrupted by noise, as in 
the original channel-sharing hypothesis,26 while the slow 
envelope survives since it has a metabolic origin.

But what about the objections coming from the 
experiments investigating the effects of blocking calcium 
entry mentioned eariler? I have previously helped to 
show41 that the glycolytic oscillator can become stable 
when calcium influx is blocked (Figure 2). The reason 
is that less calcium needs to be pumped, so the ATP 
concentration rises, which, in turn, inhibits PFK to an 
extent where glycolysis is no longer oscillatory. This 
explanation for the experimental results35,37 would 
be hard to find without the mathematical model. 
Interestingly, with other parameters, the model can 
continue to show metabolic oscillations although calcium 
is low and stable after blocking influx (Figure 2). This is 
obtained when ATP inhibition of PFK is weaker, and the 
glycolytic system therefore continues to oscillate despite 
the raised, and now oscillatory, ATP concentration, in 
agreement with Reference 38.

Modeling the mitochondria has allowed an understanding 
of other experiments. Luciani et al.35 found that calcium 
raises NAD(P)H levels in a bath with low glucose 
concentration, while it lowers NAD(P)H when the cell 
is exposed to a stimulating glucose level. I helped to 
explain this using a submodel of the mitochondria,44 
which is itself a simplification of a previous model.45 
Calcium influx has a dual effect on the mitochondria. On 
one hand, a raised mitochondrial calcium concentration 
activates dehydrogenases, which produce NADH. On 
the other hand, the current carried by the calcium influx 
lowers the mitochondrial membrane potential, which 
increases the consumption of NADH. Since the effect on 
dehydrogenases is stronger than the membrane potential 
effect at a low glycolytic input to the mitochondria, but 
lower at a high glycolytic rate, the two different kinds of 
behavior can be explained.

Fridlyand and colleagues46 presented a model of the 
interaction between calcium and adenosine 3’-5’-cyclic 
monophosphate (cAMP). They reproduced the fact that 
calcium and cAMP oscillations are synchronous and in 
phase when stimulated by the incretin hormone glucagon-
like peptide-1 (GLP-1), which activates cAMP production 
by adenylyl cyclases (ACs), but are in antiphase at low 
AC activity. Calcium, via calmodulin, activates both ACs 
and phophodiesterases (PDEs), which degrade cAMP. 
It was proposed that calcium oscillations drive cAMP 
oscillations but in the absence of GLP-1, and hence low 
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Figure 2. Blocking calcium entry can, but does not necessarily, stop metabolic oscillations. Simulations using the model by Bertram et al.22  
The upper panels, A and B, show slow calcium oscillations, which are interrupted by blocking Ca2+ channels. The conductance of these channels 
was lowered by 90% at t = 10 min. These oscillations are driven by oscillations in glycolysis and ATP levels as shown in the lower panels, C and D. 
However, when PFK has a high affinity for ATP (A and C), the metabolic oscillations die out when calcium influx is blocked (C). In contrast with 
a five-times lower ATP affinity, PFK-driven oscillations continue (D) although calcium is low and stable (B). The parameters are as Figure 7 in 
Bertram et al.22

AC activity mainly through the effect on PDEs, resulting 
in antiphase oscillations, while in GLP-1-stimulated cells, 
the Ca2+ effect on ACs dominates, and the oscillations 
are in-phase. Biologically, this is beneficial since cAMP 
potentiates calcium-induced insulin release,47,48 and for 

maximal efficacy of the incretins, the oscillations should 
therefore be in-phase. I remark that a qualitative model46 
helped in analyzing the two competing regulation 
mechanisms of calcium on cAMP levels and, more 
generally, in studying the effect of GLP-1 as it did when 
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studying the competing positive and negative effects 
of calcium on mitochondrial metabolism as explained 
earlier.44

But What about Insulin?
Considering that the task of the beta cell is to secrete 
insulin, it might be surprising how little work there has 
been on modeling insulin secretion compared to the 
focus on other aspects of beta cell physiology described 
earlier. However, already in the 1970s, Grodsky and 
colleagues49,50 and Cerasi et al.51 did model the pancreatic 
insulin response to various kinds of glucose stimuli.  
Due to the limited knowledge of beta-cell biology at 
that time, these models were phenomenological. Our 
knowledge of the control of the movement and fusion of 
insulin granules has increased to a level where we have 
started to formulate mechanistically based models.

Cerasi and co-workers51 suggested that the dynamics of 
insulin secretion was due to time-dependent inhibitory 
and potentiating signals, still unidentified,52 that act on 
insulin secretion at different times. For biphasic insulin 
secretion, inhibition is responsible for creating the nadir 
after the first phase peak, while potentiation acts later to 
produce the second phase.

As an alternative, Grodsky49 proposed that insulin was 
located in “packets,” plausibly the insulin containing 
granules but also possibly entire beta cells. Some of the 
insulin was stored in a reserve pool, while other insulin 
packets were located in a labile pool, ready for release 
in response to glucose. The labile pool is responsible for 
the first phase of insulin secretion,49,53 while the reserve 
pool is responsible for creating a sustained second phase.  
This basic distinction has been at least partly confirmed 
when the packets are identified with granules.54,55 
Grodsky49 moreover assumed that the labile pool is 
heterogeneous in the sense that the packets in the pool 
have different thresholds with respect to glucose, beyond 
which they release their content. This assumption 
was necessary for explaining the so-called staircase 
experiment, where the glucose concentration was stepped 
up, each step giving rise to a peak of insulin. There has 
been no support of granules having different thresholds,52 
but already Grodsky49 mentioned that cells apparently 
have different thresholds based on electrophysiological 
measurements.56 Later, Jonkers and Henquin57 showed 
that the number of active cells is a sigmoidal function of 
the glucose concentration, as assumed by Grodsky49 for 
the threshold distribution. I have helped to show how to 
unify the threshold distribution for cells with the pool 

description for granules,58 thus providing an updated 
version of Grodsky’s model, which takes into account 
more of the newer knowledge of beta-cell biology.

It appears that Grodsky’s pool model has gained 
stronger cell biological support than the signal model 
by Cerasi, but it also has shortcomings, in particular 
in simulating the refractive period occurring after the 
glucose concentration is lowered from a stimulating 
level50,58 in contrast to the model by Cerasi et al.,51 
where refractiveness is due to the inhibitory signal.  
By including time-dependent signals in Grodsky’s model, 
the refractory state can be simulated.59 Modeling has 
thus indicated that the determining the nature of, in 
particular, the inhibitory signal would contribute to our 
understanding of dynamic insulin secretion.

Another property of the pancreas that was implicitly 
included in Grodsky’s model is so-called derivative 
control, i.e., the fact that the pancreas senses not only 
the glucose concentration but also the rate of change. 
Modeling the whole body system has shown that this 
property is necessary for explaining data from in vivo 
studies.60 Derivative control arises from the threshold 
hypothesis as explained by Grodsky49 and in greater 
detail by Licko.61 We are currently investigating how 
derivative control arises in our mechanistic model58 
and how the subcellular parameters relate to those of 
the in vivo model. The aim is to be able to predict from  
in vivo measurements, for example, which steps of 
GSIS are impaired in diabetes patients. Such indirect 
knowledge of in vivo beta-cell functioning is virtually 
impossible without a mathematical model.

Two recent models go into greater detail with respect 
to the different pools of granules in single cells.62,63 
Both models include calcium, a necessity for coupling 
the granule model to models of bursting and calcium 
handling, in this way obtaining a model that includes all 
steps from glycolysis via calcium dynamics to exocytosis 
and insulin release. Another aspect to include is the  
so-called highly calcium-sensitive pool,64,65 which consists 
of granules with a lower calcium affinity at the expense 
of a lower fusion rate. Modeling might play a significant 
role in identifying the character and function of these 
granules.

Conclusions
Mathematical modeling has significantly contributed to 
the understanding of the mechanisms underlying the 
various patterns of bursting electrical activity in response 
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to different glucose stimuli (for reviews, see References 4 
and 13). The inclusion of a detailed description of insulin 
granules has allowed modeling of events closer to 
secretion.58,62,63 However, these models are based on 
data from rodents. It has been realized that human 
beta cells and islets differ substantially from rodent 
preparations.66,67 Thus, to gain an understanding of the 
beta cell in diabetes, these models should be updated as 
more knowledge on human beta cells appears. Fridlyand 
and colleagues46 studied the incretin effect on the 
oscillatory behavior. An important extension would be 
to include the effect of incretins on insulin secretion. 
One aim is to use the models to interpret in vivo data 
more accurately, as outlined earlier. Another could be 
to construct insulin pumps that follow the dynamics 
of the natural pancreas more closely, for example, with 
respect to derivative control and pulsatile secretion. For 
such an “artificial pancreas,” it would be important to 
include paracrine interactions between alpha, beta, and 
delta cells in the models.68 Beta-cell modeling will likely 
move closer to clinical applications, where it can be 
expected to play an important role, as it has and will, in  
the understanding of the complex oscillatory phenomena 
observed in beta cells and islets.
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