
105

The Next Generation of Artificial Pancreas Control Algorithms

Rodrigo E. Teixeira, Ph.D., and Stephen Malin, M.S.

Author Affiliation: CFD Research Corp., Huntsville, Alabama

Abbreviations: (AP) artificial pancreas, (GIP) gastric inhibitory peptide, (GIT) gastrointestinal tract, (GLP-1) glucagon-like peptide 1, 
(HPA) hypothalamic–pituitary–adrenal axis, (MPC) model-predictive controller, (PB-PK-PD) physiologically based pharmacokinetics–
pharmacodynamics, (PID) proportional-integral-derivative controller

Keywords: artificial pancreas, control, diabetes, glucagon, meal, model, stress

Corresponding Author: Rodrigo E. Teixeira, Ph.D., CFD Research Corp., 215 Wynn Drive, Huntsville, AL 35805; email address kikoteixeira@gmail.com

 Journal of Diabetes Science and Technology
 Volume 2, Issue 1, January 2008 
 © Diabetes Technology Society

Abstract
Creating a wearable artificial pancreas (AP) by closing the loop between a glucose sensor and an insulin 
infusion pump has the potential to significantly impact the complications associated with and improve 
the quality of life of diabetic individuals. Despite recent progress on glucose sensor and insulin infusion 
technologies, control algorithms built on the simple glucose value efferent and insulin dose afferent model 
are not efficient and reliable. Based on glucose regulatory mechanisms known to date, their impairment in the 
diabetic state, and fundamental principles of control theory, some corrections to the present course of research 
are proposed to facilitate the removal of this barrier. A greater emphasis on model predictive controllers or 
controllers that exploit a mathematical representation, or model, of the patient’s own physiology is proposed. 
Whole-body physiologically based pharmacokinetics–pharmacodynamics-type models hold the best odds for 
enabling a successful closed-loop AP. However, two major improvements to the diabetes modeling state of the 
art are required to make them practical for daily care: integrating hypothalamus–pituitary–adrenal axis and 
gastrointestinal tract submodels. Although there are simple representations of these in current existence, large 
concerted efforts between experimentalists and modelers will be required to enhance their accuracy. Finally, 
changes in hardware that complements controller performance are suggested. For instance, the development of 
dual control inputs of insulin and glucagon could relax tolerances on controller accuracy.
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Introduction

Renewed efforts have been taking place to make 
the artificial pancreas (AP) a reality. The AP remains a 
viable therapeutic alternative pending a biological 
cure, which would require either regeneration or 
transplantation of normal β cells with long-term success. 
In the normal pancreas, a significant variety of hormonal, 
substrate, and neuronal signals are continuously 
transduced (sensed), and the appropriate responses in 

the form of insulin, amylin, glucagon, and somatostatin 
are continuously secreted. In the current approach, 
the AP proposes to mimic those functions by linking 
a glucose sensor to an insulin pump via a computer 
control algorithm.1,2 The goal is to obtain a safe, effective, 
and affordable device that operates continuously by 
mimicking the pancreas, requiring minimal patient or 
professional intervention.
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article and, while doing so, some corrections to the 
present course of AP research are proposed.

First, it is instructive to overview the current knowledge 
on glucose regulation.

Whole-Body Glucose Regulation vs the 
Artificial Pancreas
It is currently known that at least 10 hormones 
participate closely in glucose regulation, with several 
more controlling related functions such as satiety, 
digestion, and growth (Table 1). The central nervous 
system also plays an important role by modulating the 
responses of endocrinal and other tissues according to 
a variety of inputs, including the circadian rhythm.10 It 
is also important to bear in mind that our knowledge 
of these complex mechanisms is still expanding rapidly. 
For instance, it has been discovered that mice lacking 
osteocalcin show glucose intolerance, insulin resistance, 
and β-cell deficiency.11 Because the same gene is present 
in humans, this finding suggests that the skeletal system 
may be pivotal in regulating our glucose metabolism.

There is justified optimism for this approach, although 
some limitations are to be expected. Clinical trials have 
shown that continuous glucose monitoring with patient-
administered insulin does result in tighter control than 
traditional clinical practice.3,4 Moreover, large longitudinal 
clinical trials have confirmed that intensive glucose 
monitoring with informed insulin dosing is effective in 
reducing the risks of related complications and delaying,5–7 
but not halting,8,9 glucose control deterioration. Also, it 
is not clear if it can be effective for poorly controlled 
diabetic patients.9 In short, the AP promises freedom 
from multiple daily finger pricks and injections with the 
bonus of tighter control for a significant portion of the 
diabetes disease continuum.

Today, glucose sensing and insulin pump technologies 
have matured to the point of making the AP viable. 
However, an efficient and reliable control algorithm to 
close the glucose–insulin loop has thus far remained 
elusive, despite numerous attempts (see reviews by 
Hovorka et al.1 and Klonoff2). The necessary ingredients 
for building such an algorithm are delineated in this 

Table 1.
Known Hormones Directly Involved with Glucose Regulation

Hormone Tissue/organ Secretagogues Action

Insulin β cells (pancreas)
Glucose, fatty acids, amino acids, 

incretins (GLP-1, GIP)
Promotes uptake and storage of glucose,
lipids, and amino acids in various tissues

Amylin β cells (pancreas) Same as insulin
Suppresses glucagon secretion
Slows down gastric emptying

Promotes satiety

Incretins (GLP-1, GIP)
Gastrointestinal tract

(L and K cells)
Meal ingestion

Amplifies first-phase secretion of insulin
Stimulates late-phase insulin secretion

Slows down gastric emptying
Suppresses glucagon secretion

Somatostatin

δ cells (pancreas)
stomach
intestine

brain

Growth hormone
Suppresses the secretion of various hormones, 

including growth hormone and
gastrointestinal hormones

Glucagon α cells (pancreas) Glucose <70 mg/dl Promotes glycogenolysis and gluconeogenesis

Catecholamines
(epinephrine, 

norepinephrine)

Adrenal glands
(medulla)

Glucose <70 mg/dl

Suppresses insulin secretion 
Promotes glucagon secretion

Mobilizes gluconeogenesis substrates
Promotes hepatic glucose production and lipolysis

Growth hormone Pituitary
Glucose <65 mg/dl, sleep, exercise, 

ghrelin, dietary protein

Suppresses liver glucose uptake
Promotes gluconeogenesis

Promotes lipolysis

Cortisol Adrenal glands (cortex) Glucose <60 mg/dl
Promotes glycogenolysis, lipolysis, and proteinolysis

Mobilizes amino acids and ketone bodies
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Figure 1 summarizes the known hormones, their endocrine 
glands, secretagogues, and actions that contribute to 
glucose regulation as understood today. In the healthy 
human subject, glucose is maintained at a midnormal 
range of 88 to 96 mg/dl (4.9 to 5.3 mmol/liter).12 
Upon ingestion of a meal, incretins help prepare the 
pancreas for the imminent surge of blood glucose. The 
incretins glucagon-like peptide 1 (GLP-1) and gastric 
inhibitory peptide (GIP), secreted by specialized cells 
in the gastrointestinal tract (GIT), promote the first-
phase secretion of insulin in proportion to the glucose 
content of the meal even before its appearance in the 
bloodstream.13 This constitutes an anticipatory or feed-
forward control loop. Insulin promotes the uptake of 
glucose primarily in skeletal muscle, adipose tissues, and 
liver and of proteins in various tissues and suppresses 
lipolysis. Amylin is cosecreted with insulin by β cells in 

the pancreas. Amylin, in combination with GLP-1 and GIP, 
helps reduce the total insulin demand by slowing gastric 
emptying and promoting satiety.14,15 Insulin and amylin 
also seem to suppress the release of glucagon, further 
attenuating the postprandial glucose peak.14 Incretins 
also influence the late phase of insulin secretion.13

During hypoglycemia, the normal body has a series 
of redundant safeguards at its disposal to maintain an 
adequate glucose supply for the brain. As glucose lowers 
below ~80 mg/dl, insulin secretion halts, thus favoring the 
ongoing renal and hepatic glucose productions. If levels 
keep falling to ~70 mg/dl, glucagon and catecholamine 
(epinephrine and norepinephrine) secretions are activated 
in the pancreas and adrenal glands, respectively. These 
hormones quickly activate multiple pathways that work 
synergistically to counter hypoglycemia. Glucagon sets 

Figure 1. Schematic representations of hormonal cues following a meal (left) and hypoglycemia (right). Organs (boxes) involved in energy 
homeostasis are interconnected by major arteries and veins (lines and arrows). Hormones secreted by a given organ are shown downstream of 
that organ and, conversely, hormonal targets are depicted upstream of the target organ. The autonomous nervous system (ANS) pathways are 
represented by thick solid lines, but its regulation of blood flow is omitted. Storage and production of substrates by the liver and adipose tissues 
are also shown. Related hormones regulating satiety and the circadian rhythm are included.
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off hepatocytes to produce glucose from stored glycogen 
(glycogenolysis) and from glycerol, lactate, and amino 
acids (gluconeogenesis). Catecholamines amplify the 
effect of glucagon directly by facilitating its secretion and 
costimulating hepatic glucose production and indirectly 
by mobilizing gluconeogenic substrates. Falling levels 
of insulin favor sensitive lipolytic pathways to release 
lipids. If hypoglycemia is prolonged over several hours, 
growth hormone (<65 mg/dl) and cortisol (<60 mg/dl) 
are secreted to help recruit alternative fuels via lipolysis, 
proteinolysis, and ketogenesis. At even lower glucose 
levels, brain functions become impaired.

Improving the Software
The preceding overview, albeit brief, suggests that 
glucose and related energy regulatory networks possess 
a complexity that eclipses the control potential of 
any glucose–insulin AP, and even more so in disease 
conditions where the pancreas is not the only affected 
organ. It appears the logical error commonly made is 
that since the therapeutic goal is to keep plasma glucose 
within physiological concentrations, glucose concentration 
is the only relevant biomarker for adjusting insulin 
dosage, and indeed the dosage of any diabetes drug. 
This statement can only be correct if all other substrates, 
hormones, and neuronal signals are either negligible 
(insensitive) or simply follow glucose concentration 
fluctuations (redundant).

Physiology and clinical experience gives us further 
indication that other biomarkers cannot be ignored. For 
instance, serum cortisol, hepatic glycogen stores, and 
expression levels of glucose transporters are neither 
negligible nor redundant as they will modify the 
relationship between insulin and glucose within a 
patient. Hence, operating with only a glucose sensor 
renders the AP severely starved for information. Lacking 
a complicated array of sensors, this conundrum can only 
be solved if the controller estimates the missing pieces. 
The estimation process requires the use of a mathematical 
model and supplemental user-inputted data. These 
algorithms are called model predictive controllers (MPC).

In model-less controllers, the error, or the difference 
between the output (glucose concentration) and the 
desired set point value (normoglycemia), is used to 
calculate a change in the input (insulin). A common 
example of this is the proportional-integral-derivative 
controller (PID). In contrast, MPC uses an internal model 
to predict future outcomes from past and current states 
and then uses a mathematical tool called cost function 

minimization to find a sequence of control inputs to 
reach the desired future outcome. Alternatively, Kalman 
or Particle filters could be employed instead of cost 
function minimization.

In general, model-less controllers cannot outperform 
MPC provided that the model is reasonably accurate. In 
diabetes care this becomes clear if one considers the fact 
that the same patient may have similar glucose readings 
at the same time of the day and on consecutive days but 
still reacts completely differently to the same insulin dose. 
Suppose there was a higher excursion after breakfast on 
day 2 caused by an increase in hepatic glycogen stores 
that occurred overnight due to a late-night snack. The 
MPC fitted with a good model would have been able 
to take this into account (provided the patient did not 
forget to input the content of the meal into the AP) and 
discriminate between the two situations. The larger 
glucose excursion on day 2 after breakfast would have 
been predicted by the MPC and the insulin dosage 
adjusted accordingly and delivered preemptively with 
a manual trigger. The model-less controller, however, 
would have given the same triggered response as the 
day before, resulting in poorer subsequent control.

The MPC is especially useful for multivariate nonlinear 
systems such as the human body and has been 
employed successfully in continuous drug delivery and 
anesthesia.16–18 Recently, clinical trials have leaned toward 
the use of MPC19–21 with the exception of Medtronic 
MiniMed’s PID controller.22 MPCs, even when the model 
was simply a set of heuristic rules,20 have demonstrated 
better performance than PID control with patient-specific 
fine-tuned gains.23 However, this result is debatable, as 
clinical trials comparing PID and MPC approaches 
directly under equal conditions have not been carried 
out. Perhaps the main culprits are the notorious time lags 
associated with insulin analog kinetics and subcutaneous 
glucose sensing, which are particularly detrimental to the 
performance of PID controllers. In the case of MPC, such 
lags can be built into the model, allowing the controller 
to compensate for it. Conversely, PID controllers have no 
means to account for delays and must rely on external 
signal filtering to ameliorate this effect.

How accurate does the MPC model have to be? Clearly, 
any physiological model could range from having no 
correlation to the real organism to having a perfect 
correlation. It is not hard to imagine that an ideal model 
would need to faithfully capture every biochemical and 
physical process in every tissue related to the disease. 
Because this is not feasible in the foreseeable future, 
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the most detailed model that can be afforded with 
experimental data presently available is needed. While 
this statement may seem trivial, current practice suggests 
otherwise. To this date, minimal models of glucose 
regulation are still vigorously researched,24 even though 
whole-body physiologically based pharmacokinetics–
pharmacodynamics (PB-PK-PD)-type models with 
varying degrees of complexity and accuracy have been 
proposed and validated in controlled experiments for 
some time.25–32 Minimal models and PB-PK-PD models 
are similar in that they both use well-stirred reactor 
abstractions (referred to as compartments). The difference 
lies in that minimal model compartments subsume a 
large collection of tissues and organs (e.g., peripheral 
organs) to obtain the smallest possible set of equations, 
whereas PB-PK-PD models treat each organ or tissue as 
(more or less) separate compartments (e.g., brain, liver, 
pancreas, kidneys, adipose tissues) and subcompartments 
(e.g., erythrocytes, plasma, interstitium, tissue cells).

Any good modeling practice should strive to maximize 
the utilization of available data while keeping the 
number of assumptions to a minimum. In the PB-PK-PD 
approach, data utilization is maximized by breaking 
down compartments into their constituent organs, tissues, 
cells, organelles, and so on when data are available to 
calibrate those submodels independently. This gives 
rise to semiempirical submodels or models based on 
sound biochemical and physical principles with a few 
parameters fitted to reproduce experimental data. A good 
example of this is the pancreas model by Sorensen.29 
At even higher resolutions, sometimes it is possible to 
create submodels where most parameters could, at least 
in principle, be measured directly, thus bypassing the 
need for fitting. By reaching for a direct correspondence 
between physiological model and real organism, data 
utilization is maximized and the number of assumptions 
is minimized.

A desirable side effect of maintaining a c lose 
correspondence between model and reality is that 
the MPC is better able to accommodate interpatient 
pathophysiological variations, which are considerable 
in diabetes and indeed in many other conditions. The 
idea is that the AP “learns the patient” based on its 
past performance to continuously improve future 
control. The close correspondence could also allow the 
patient to meaningfully change some of the parameters: 
if the patient loses 5 pounds he or she just enters the 
new weight into the AP and insulin injection rates are 
recalculated accordingly. Here, patient vitals (body 
type, gender, age, etc.) and other easily available data 

(hemoglobin A1c, time of last hypoglycemic episode, 
subjective mental stress level, etc.) could be used for the 
initial calibration to increase reliability during early use 
of the AP.

So far, most if not all MPC trials have been performed 
on individuals with type 1 diabetes under well-
controlled conditions. Daily life, however, is not well 
controlled: we eat complex foods, exercise, sleep, get sick, 
and so on. This will require increasingly sophisticated 
modeling, including stress and nutrition data as well. To 
this end, the next advances in diabetes modeling should 
include the development and integration of submodels 
of the hypothalamic–pituitary–adrenal (HPA) axis and 
the gastrointestinal tract. The HPA axis is essential 
in capturing the response and adaptation to physical 
and mental stress and diurnal cycles, as well as their 
impairment in the diabetic state.33,34 All diabetes models 
to date have lacked this key system, even though simple 
models of the HPA axis exist.35–38 A GIT submodel is 
needed, at a minimum, to relate the ingestion of several 
meals a day to a time trajectory of glucose appearance 
in the bloodstream. Examples of this are available,31,39,40 
even though model-independent testing against mixed 
meal data was completed only recently.40 A more 
adequate, albeit considerably more complex, GIT model 
should predict the appearance rate of carbohydrates, fats, 
proteins, and water as a function of meal composition 
and hormonal signals. The HPA and GIT are highly 
complex subsystems, and the development of adequate 
models will require large amounts of experimental data, 
a significant portion of which do not presently exist. In 
addition, their integration will also require concurrent 
enhancements to the existing PB-PK-PD models to make 
them compatible. As a result, large and concerted research 
efforts will be required between experimentalists and 
modelers. Despite the difficulties, some researchers have 
already begun to make inroads toward this end.39,41–43

Improving the Hardware
From the assertion that an information-starved, glucose–
insulin AP places stringent tolerances on model accuracy, 
it follows that an implementation that senses one or 
more species in addition to glucose, or infuses one or 
more drugs in addition to insulin, would greatly relax 
those tolerances (also called a multi-input–multi-output 
controller). Ideally, for sensing, one would like to measure 
species that vary independently from each other under 
most situations (“orthogonal” species). The goal here is to 
constrain the solution space or, in other words, to reduce 
the uncertainty in the control inputs estimated by the 
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internal model as much as possible. The corollary also 
holds. If a MPC possesses a model sophisticated enough, 
the AP should be able to compensate for noise or drift 
in the sensor by partially relying on model predictions 
of the measured variable at future time points. In this 
way, the reliability of glucose sensors could be improved 
or, equivalently, the interval between sensor calibrations 
increased.

Integrating even just one additional control input in 
addition to insulin could have a similar or perhaps 
greater impact in relaxing model accuracy tolerances. 
Historically, the only choice for additional control has 
been glucagon, and the last study, using an insulin and 
glucagon intravenous approach, was published in 1977.44 
Recently, however, an animal study has reintroduced 
the idea, this time via the subcutaneous route and 
showing encouraging results.45 Glucagon is the logical 
choice as it is the only known insulin counterregulatory 
pancreatic hormone, is fast acting, and its secretion is 
usually altered, deficient, or entirely absent in diabetic 
individuals. In contrast to fast-acting sugars, glucagon 
modulates multiple internal regulatory mechanisms. 
Glucagon is stable for months in powder form but must 
be used promptly upon reconstitution. It may be prepared 
periodically and loaded into existing portable insulin 
pumps.45 Alternatively, a dilution step could be adapted 
to the pump so that reconstitution occurs right before 
injection. Still, pramlintide, an amylin analog, should not 
be discounted, as it has been shown to greatly reduce the 
need for insulin and to improve long-term control.15,46,47

Current approaches typically detune insulin input to 
minimize the risk of hypoglycemia.2 This detuned 
approach is contraindicated in the therapeutic model of 
tight glucose concentration control. The higher control 
aggressiveness afforded by the inclusion of a glucagon 
pump could simultaneously tighten glucose excursions 
and drastically reduce hypoglycemia risk, a strategy 
that could be enhanced further with amylin analogs, 
perhaps by premixing it with insulin prior to infusion. 
Paradoxically, it may turn out that developing a more 
complex AP with dual insulin/glucagon control inputs 
may actually be a more readily attainable goal than using 
only insulin. That is, increasing hardware complexity in 
order to decrease software complexity may turn out to 
be the right prescription.

Conclusions
The artificial pancreas holds the promise for future 
freedom from multiple daily finger pricks and injections 
with a potential bonus of tighter control for a significant 

portion of the diabetes disease continuum. However, 
an efficient and reliable control algorithm to close the 
glucose–insulin loop has yet to be developed.

An overview of the current knowledge of glucose 
regulatory networks suggests a complexity that eclipses 
the control potential of any glucose–insulin AP. 
Because only a glucose sensor is available, the paucity 
of information about the patient’s internal physiological 
state can only be remedied by a controller that estimates 
the missing parameters via a mathematical model (model 
predictive controller) while relying on supplemental user-
inputted data. For the model, whole-body physiologically 
based pharmacokinetics–pharmacodynamics-type models 
hold the best odds for enabling a successful closed-loop 
AP because they retain as much direct correspondence to 
the real organism as possible. This characteristic allows 
the accuracy to improve as more data become available, 
such as when the AP is “learning the patient” or using 
past performance to improve future control.

To enable adequate control in daily life situations, the 
next advances in diabetes modeling should move toward 
the development and integration of submodels of the HPA 
axis and the GIT. The HPA is essential in capturing the 
response and adaptation to stressors and diurnal cycles, 
as well as their impairment in the diabetic state, whereas 
a GIT model is required for predicting the appearance of 
nutrients in the bloodstream following the consumption 
of meals. In this context, this expanded model should 
also become valuable in patient education, for health-
care provider training, as a “virtual diabetic” testbed 
simulator for benchmarking different noise filtering 
and control strategies, and for academic and industrial 
research. On the hardware side, more emphasis should 
be placed in developing a dual insulin/glucagon portable 
pump while continuing to enhance glucose sensing 
technology to ease the level of sophistication required 
from the controller.

It is well known that interpatient variance can be 
rather large, especially in a complex metabolic disease. 
Nevertheless, modelers commonly test their predictions 
against population averages without ever attempting to 
reproduce the individual. Even in a cohort of normal 
subjects, controlled experiments have shown that 
postprandial peaks typically have a standard deviation 
relative to the mean of ~30% in glucose and ~100% 
in insulin,43 so modeling the individual using only 
population-averaged data may partially account for 
the limited successes in attaining efficient and reliable 
control.
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Despite the challenges highlighted here, the current 
trajectory should be able to close the loop and deliver the 
first portable glucose–insulin AP in the near future. This 
could constitute a major therapeutic breakthrough due to 
the enormous leap in the volume of patient-specific data 
accessible via continuous glucose monitoring coupled to 
the intensive care afforded by a semiautonomous insulin 
pump. Nevertheless, the first generation of AP should 
not be expected to approach the performance of a real 
pancreas and periodic intervention will still be required. 
The battle against diabetes is ongoing, and the glucose–
insulin AP could be an important step along the way.
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