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Introduction

Thirty years ago, the possibility of external closed-loop 
control (artificial pancreas) of blood glucose (BG) levels 
in people with type 1 diabetes (T1DM) was established 
with an instrument known commercially as the 
Biostator™, which used intravenous (i.v.) BG sampling 
and i.v. insulin and glucose delivery.1–3 Thus, this device 
was cumbersome and unsuitable for outpatient use.  
A minimally invasive closed loop using a subcutaneous 
(s.c.) continuous glucose monitor (CGM) and s.c. insulin 
delivery was needed. With the introduction of several 
s.c. continuous glucose monitoring systems (CGMS),4–7 
s.c.–s.c. systems using CGM coupled with an insulin 

infusion pump and a control algorithm have been 
developed and tested.8–11 However, subcutaneous closed-
loop control has encountered limitations primarily as a 
consequence of sensor performance and reliability. It is 
generally recognized that CGM accuracy is lower than 
the accuracy of self-monitoring devices12 and that “the 
glucose monitor remains the main limiting factor in 
the development of commercially viable closed-loop 
system.”9 This is because of several factors, including, but 
not limited to, (i) tissue-to-probe interface (e.g., wound 
healing effects, movement artifacts), (ii) measurement of 
glucose concentration in interstitial fluid but calibration 
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with BG, and (iii) interstitial time lag. For this reason, a 
new guideline is proposed for the assessment of several 
aspects of CGM performance, including point and trend 
accuracy, sensitivity and specificity, device stability, 
calibration, and lag time.13 While the discussion of all 
these aspects of sensor performance is beyond the scope 
of this article, we concentrate on issues of the analysis 
and interpretation of CGM data related to closed-loop 
control.

The two major types of algorithmic controllers are 
proportional–integral–derivative (PID) and model-
predictive control (MPC) . The general consensus is that 
PID control would be suitable for implantable i.v. systems 
because of the minimal time lag between BG reading and 
insulin adjustment,14,15 whereas MPC is the tool of choice 
for s.c.–s.c. control, which has to deal with a substantial 
time lag.9 Indeed, s.c.–s.c. controllers need to compensate 
for two time delays: (i) because the CGM resides in 
interstitial fluid there is a 5- to 20-minute time lag 
between change in blood and change in sensor reading 
due to blood-to-interstitial glucose transport and sensor 
limitations16,17 and (ii) a change in the rate of insulin 
delivery takes 30 minutes or more to result in a change 
in insulin action.18,19 While these time delays have little 
impact in steady metabolic states (e.g., fasting during 
sleep), they are critical during rapidly changing metabolic 
demands, such as meals or physical activity. Consequently, 
semiclosed loop control, i.e., closed-loop control between 
meals opening for delivery of prandial insulin, has 
been proposed (the Advanced Insulin Infusion using a 
Control Loop project8). In addition to user intervention, 
algorithms retrieving CGM data prior to submission to 
the controller could have a major contribution to the 
success of the artificial pancreas. In order to provide the  
controller with the best data possible, a series of analyses 
are needed prior to initiation of PID or MPC. This article 
discusses three categories of methods.

i.	 Evaluation of CGM accuracy, including separate 
estimation of, and compensation for, calibration 
errors and blood-to-interstitial glucose time lag based 
on a diffusion model. 

ii.	 Risk analysis,  which uses a nonlinear data 
transformation of the BG scale to define risk space, 
providing certain numerical advantages to optimal 
control. 

iii.	Forecast, which uses time series analysis to predict 
future glucose values, thereby alleviating the effect 
of time lags. The combination of risk and time 
series analysis is used to predict the risk of crossing 
specific thresholds (e.g., hypo- or hyperglycemia). 

All analyses are illustrated by CGM data collected during 
clinical trials with the MiniMed CGMS® (Medtronic, 
Northridge, CA) and Freestyle Navigator™ (Abbott 
Diabetes Care, Alameda, CA).

Decomposition of Sensor Errors 
Figure 1 presents the components of the error of the 
MiniMed CGMS assessed during a hyperinsulinemic 
hypoglycemic clamp involving 39 subjects with T1DM. 
In this study reference BG was sampled every 5 minutes 
and then reference data were synchronized with data 
from the CGMS. The calibration error was estimated as 
the difference between CGMS readings and computer-
simulated recalibration of the raw CGMS current using 
all reference BG points to yield an approximation of the 
dynamics of interstitial glucose (IG) adjusted for the BG-
to-IG gradient.20 The physiologic BG-to-IG time lag was 
estimated as the difference between reference BG and the 

“perfectly” recalibrated CGMS signal. The mean absolute 
deviation (MAD) of sensor data was 20.9 mg/dl during 
euglycemia and 24.5 mg/dl during the descent into 
and recovery from hypoglycemia. Computer-simulated 
recalibration reduced MAD to 10.6 and 14.6 mg/dl, 
respectively. Thus, during this experiment, approximately 
half of the sensor deviation from reference BG was 
attributed to calibration error; the rest was attributed to 
BG-to-IG gradient and random sensor deviations.

Figure 1. CGMS error during hypoglycemic clamp decomposed into 
error of calibration and physiologic deviation caused by blood-to-
interstitial time lag.

A diffusion model was fitted for each individual subject’s 
data, as well as globally across all subjects. While the 
details of this model have been reported previously,20 
of particular importance is the finding that “global,” 
across-subjects, parameters describe the observed blood-
to-interstitial delays reasonably well.20 The availability 
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of global parameters would allow glucose concentration 
in the interstitium to be numerically estimated directly 
from reference BG data. This in turn would allow for 
(i) setting the accuracy benchmark by simulating a 
sensor that does not have calibration errors, (ii) tracking 
and correcting errors because of calibration, and  
(iii) numerical compensation for BG-to-IG differential 
through an inverted diffusion model estimating BG  
from IG approximation of the sensor (in essence, the 
reference BG line in Figure 1 could be derived from the 
IG line numerically, thereby reducing the influence of 
interstitial time lag).

Risk Analysis of BG Variability 
Traditionally, statistical estimation of BG variability in 
diabetes includes computing the standard deviation of 
BG readings, counting of episodes below/above certain 
thresholds, or computing of specific statistics, such as 
the M value,21 mean amplitude of glycemic excursions,22 
or lability index.23 While all these computations are 
available in our toolbox, we would advocate using a set 
of advanced measures that we have been developing  
since the late 1990s for both self-monitoring of blood 
glucose24 and CGM25 data. The reason is that the traditional 
measures are unequally sensitive to hypoglycemic and 
hyperglycemic excursions due to the inherent asymmetry 
of the BG scale26 and therefore portray a bias toward 
the hyperglycemia picture of variability. Correcting 
this problem numerically, we have introduced a data 
transformation that symmetrizes the BG scale using  
only accepted clinical assumptions, not a particular data set, 
which makes the approach extendable to any data.26 Based 
on this transformation, we have developed our theory 
of risk analysis of BG data27 defining a computational 
framework, the risk space. Figure 2 presents the effect  
of transforming BG fluctuations from glucose to risk 
values.

This transformation provides the following numerical 
and clinical advantages over traditional and literature 
variability measures. (i) Similar emphasis is placed on 
hypoglycemic and hyperglycemic ranges. (ii) The normal 
BG range (70–180 mg/dl) is given less weight, thus 
variability contained within normal range carries less risk 
than excursions outside of this range. This corresponds to 
the clinical importance of extreme BG fluctuations and 
to the notion that fluctuations within normal range are 
generally harmless. (iii) Excursions into extreme hypo- 
and hyperglycemia get progressively increasing risk values; 
this corresponds to the clinical impression that more 
extreme hypo- or hyperglycemia carries higher risk for 
the patient. 

Projection and Time Series-Based 
Prediction of Future BG Values 

Most contemporary CGM systems include glucose 
prediction capabilities, in particular hypoglycemia and 
hyperglycemia alarms. Practically all predictions are 
currently based on a linear extrapolation of glucose 
values, e.g., projection ahead of the current glucose trend. 
Because glucose fluctuations are generally nonlinear, such 
projections frequently result in errors and typically have 
a high false-alarm rate. In contrast, a model-based sliding 
algorithm designed to continually predict glucose levels 
30–45 minutes ahead had substantially higher accuracy 
than typical linear projections.28 The sliding algorithm 
works as follows. For each time series, a first-order 
polynomial model is fitted, continually at any sampling 
time, against past glucose data by weighted least 
squares. Then, the model is used to predict the glucose 
level at a preset prediction horizon. In model fitting, 
data points are “weighted” using a forgetting factor of 
0.8 (which was determined to be optimal in numerical 
experiments), i.e., the weight of the kth point before 
the actual sampling time is (0.8)k. Figure 3 presents the 
action of the prediction algorithm at a prediction horizon 
of 30 minutes. While the algorithm tends to exaggerate 
transient peak and nadir glucose values, its overall 
predictive capability is very good. Judged by continuous 
glucose error-grid analysis (CG-EGA), >80% of predicted 
vs actual values fall in CG-EGA zone A and >85% fall in 
zones A+B. As would be expected, the accuracy of the 
prediction is highest during euglycemia, with 97% of 
predicted vs actual values falling in CG-EGA zones A+B.

Figure 2. CGM data in glucose vs risk space: converting data equalizes 
numerically the hypoglycemic and hyperglycemic ranges and suppresses 
the variance in the safe euglycemic range.
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Autocorrelation of CGM Data 
Finally, a statistical disadvantage of the CGM data 
stream is the high interdependence between data points 
taken from the same subject within a relatively short 
time. As a result, standard statistical analyses, such as  
t tests, while appropriate for independent data points, 
will produce inaccurate results if applied directly to 
CGS data. The reason is a severe violation of the statistical 
assumptions behind the calculation of degrees of freedom, 
which are essential to compute the p value of any 
statistical test. Figure 4 illustrates this point and suggests 
a way to avoid such a miscalculation.

In Figure 4, the autocorrelation of consecutive CGM 
data points remains significant for approximately  
1 hour, after which its significance drops below the 
level of 0.05. Thus, CGM readings that are separated by 
more than 1 hour in time could be considered linearly 
independent, which is sufficient for some statistical tests. 
A note of caution is that linear independence does not imply 
stochastic independence, which might be essential in some 
cases. Another conclusion from Figure 4 is that CGM 
data aggregated in 1-hour blocks would be reasonably 
approximated by a Markov chain, which opens a number 
of possibilities for the analysis of aggregated data.  
Finally, in Figure 4 the linear dependence between 
consecutive data points practically disappears at a time 
lag of ~30 minutes. Therefore, a projection of BG levels 
more than 30 minutes ahead, which is using linear 
methods, would be inaccurate. This last point has 

Figure 3. Real-time prediction of glucose fluctuation using an autoregression algorithm.

Figure 4. Autocorrelation of continuous monitoring data: the 
autocorrelation coefficients become insignificant at a time lag of 
approximately 1 hour; thus CGM readings more than 1 hour apart could 
be considered linearly independent.

significant clinical impact on the settings of hypo- or 
hyperglycemia alarms, many of which are based on 
linear projections of past CGM data.

Conclusions 

The CGM data stream has some inherent characteristics 
that allow for advanced data analysis approaches, but also 
calls for caution if standard statistical methods are used. 
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Most importantly, CGM data represent time series, i.e., 
sequential readings that are ordered in time. This leads 
to two fundamental requirements to their analysis. First, 
consecutive sensor readings taken from the same subject 
within a relatively short time are highly interdependent. 
Second, the order of CGS data points is essential for 
clinical decision making. For example, the sequences 90→
82→72 mg/dl and 72→82→90 mg/dl are clinically very 
different. These properties allow the development of 
several algorithms presented in this article: (i) evaluation 
of and compensation for sensor errors as a consequence of 
calibration and blood-to-interstitial time lag, (ii) analysis  
of temporal variability and associated risks, and  
(iii) real-time prediction of glucose trends and events 
using nonlinear prediction methods. These analyses of 
system dynamics are extremely useful in enabling real-
time closed-loop control. 

We caution that standard statistical analyses, while 
appropriate for independent data points, will produce 
inaccurate results if applied to CGM data. Data preprocessing 
steps, such as taking data more than 1-hour apart, would 
alleviate this problem. From a control point of view, of 
particular importance is that 1-hour block aggregation 
would produce a Markov chain, which opens the possibility 
of using advanced engineering and mathematical 
methods. Clinically, a linear projection of BG levels more 
than 30 minutes ahead would be generally inaccurate.
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