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Abstract

Background:
Hyperglycemia is prevalent in critical care and tight control can save lives. Current ad-hoc clinical protocols 
require significant clinical effort and produce highly variable results. Model-based methods can provide tight,  
patient specific control, while addressing practical clinical difficulties and dynamic patient evolution. However, 
tight control remains elusive as there is not enough understanding of the relationship between control performance 
and clinical outcome.

Methods:
The general problem and performance criteria are defined. The clinical studies performed to date using both ad-hoc 
titration and model-based methods are reviewed. Studies reporting mortality outcome are analysed in terms of 
standardized mortality ratio (SMR) and a 95th percentile (±2s) standard error (SE95%) to enable better comparison  
across cohorts.

Results:
Model-based control trials lower blood glucose into a 72-110 mg/dL band within 10 hours, have target accuracy  
over 90%, produce fewer hypoglycemic episodes, and require no additional clinical intervention. Plotting SMR  
versus SE95% shows potentially high correlation (r=0.84) between ICU mortality and tightness of control. 

Summary:
Model-based methods provide tighter, more adaptable one method fits all solutions, using methods that enable  
patient-specific modeling and control. Correlation between tightness of control and clinical outcome suggests 
that performance metrics, such as time in a relevant glycemic band, may provide better guidelines. Overall, 
compared to the current one size fits all sliding scale and ad-hoc regimens, patient-specific pharmacodynamic  
and pharmacokinetic model-based, or one method fits all control, utilizing computational and emerging sensor 
technologies, offers improved treatment and better potential outcomes when treating hyperglycemia in the highly 
dynamic critically ill patient.
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Introduction

Hyperglycemia is prevalent in critical care.1,4  
Increased counter-regulatory hormone secretion stimulates 
endogenous glucose production and increases effective 
insulin resistance,3,4 elevating equilibrium glucose levels 
and reducing the amount of glucose that the body can 
utilize with a given amount of insulin.  Nutritional 
regimes with high glucose content further exacerbate 
hyperglycemia.5-10 

Hyperglycemia worsens outcomes, increasing the 
risk of severe infection,11 myocardial infarction,1 and 
polyneuropathy and multiple-organ failure.2,12 Evidence 
also exists of significant reductions in other therapies with 
aggressive glycemic control.2,13-17  Van den Berghe et al. 2,16,17  
and Krinsley14,15 reduced ICU patient mortality 18% to 45% 
for patients with length of stay greater than three days. 
Both studies also showed significant cost savings per 
patient.18, 19

Thomas et al.20 achieved an average glucose reduction 
of approximately 15% using the protocol from van den 
Berghe et al.,2 but saw no change in mortality. However, 
their results and report focused primarily on the 
implementation of a web-based glycemic control protocol, 
rather than on tight control per se. Other studies that  
focus primarily on glucose control are limited in duration 
or patient numbers, and do not extend to mortality 
endpoints.20-22 

All of these studies used ad-hoc sliding scale or 
titration-based protocols developed primarily by clinical 
experience, (i.e. expert-based control) a typical one size 
fits all solution. Therefore, they are less optimal when 
faced with the dynamic patient variation typical of critical 
care. This issue has been illustrated in simulation23,24 
and clinical analysis.7,24-30 In contrast, model-based tight 
glycemic control protocols have been successful in 
producing consistent control.25,31-36 

Next, the more critically ill the cohort, the likelier the 
occurrence of severe stress-induced hyperglycemia 
stemming from higher insulin resistance.16,37-40  This effect  
is illustrated in van den Berghe et al.’s two studies. 
Both used limits of 110 mg/dL,2,17 and achieved average 
glycemia of 102 ± 18 and 108 ± 26 mg/dL with median 
APACHE II scores of 9.0 and 24, respectively. However, 
the relative ICU mortality reduction was a significantly 

smaller in the more critically ill cohort. Thus, cohort 
severity of illness is a significant confounding factor in 
comparing clinical results.

All protocols are challenged by the significantly elevated 
insulin resistance encountered in broad critical care 
cohorts. In addition, insulin effect saturates at high 
concentrations.32,41,42 Hence, glycemic reductions using 
insulin alone can be limited depending on the patients 
level of stress-induced insulin resistance,43 leading to 
larger variability in performance. This effect might be 
particularly true for those protocols commanding up to  
limits of 20-50 U/hour of insulin.

However, glycemic control is also possible by controlling 
the nutritional inputs exacerbating the problem.5-10, 23,24 

Research that specifically lowered caloric intake of 
carbohydrates significantly reduced blood glucose 
levels.5,8,10,45-47 In particular, feeding only sb 33% to 66% 
of the ACCP guidelines48 minimized mortality and 
hyperglycemia versus the other two tertiles.10  Hence,  
this approach provides an additional effective pathway 
for glycemic control.

Finally, some studies find intensive insulin therapy 
“taxing”, 49-51 noting that van den Berghe et al.2,16 used 
additional staff. Hence, despite the potential, many 
intensive care units do not use fixed protocols.4,13,50-52 There 
is also little agreement on what constitutes desirable 
glycemic performance,50,52,53 particularly with regard to 
how tight control affects outcome.

Overall, any glycemic control protocol must reduce elevated 
blood glucose levels, while accounting for inter-patient  
variability, conflicting therapies and dynamically evolving 
physiological condition. Hence, it must be adaptive and/
or able to identify changes in patient metabolic status, 
particularly with respect to insulin sensitivity. More 
specifically, it must accurately match therapeutic insulin 
and nutrition inputs, or demand, with the ability to utilize 
these inputs, a very difficult task in the highly dynamic 
critical care patient. 

This paper reviews current clinical studies of tight glycemic 
control in critical care. A series of basic performance 
criteria is presented. Analysis focuses on how glycemic 
performance may be linked to clinical outcome.



84

Overview of Glycemic Control in Critical Care: Relating Performance and Clinical Results Chase

www.journalofdst.orgJ Diabetes Sci Technol  Vol 1, Issue 1, January 2007

Methods

Glucose-Insulin Models and Control
Model-based control is attractive for its potential to 
aggregate clinical measurements into a direct assessment 
of glycemic status to provide patient-specific intervention; 
matching demand and utilization in a way that is beyond 
typical sliding scale protocols. Thus, they can adapt to the 
highly dynamic critical care patient. However, adequate 
models of a complex and non-linear metabolic system are 
required. While outside the scope of this paper, a current, 
comprehensive review is given in.54 

There are currently three main model-based glycemic 
control results:

• Model Predictive Control (MPC)35 

• PID and Sliding Mode Control25,33,55 

• Targeted Insulin+Nutrition Control and SPRINT23,32,44,56,57 

The model and control methods differ significantly for 
each case. However, they all offer the ability to fit a 
patient specific model and determine a patient-specific 
intervention – thus determining the demand and finding 
the optimal intervention. 

MPC uses a complex metabolic model and an adaptive 
filter that determines control interventions, focusing on 
adaptation to changing patient response.35 The PID and 
sliding mode control results are based on simple linear 
models and primarily focused on applying continuous 
glucose sensors.25,33,55 The Insulin+Nutrition approach 
uses a model of relatively moderate complexity to fit 
patient specific parameters and determine the optimal  
intervention to achieve a pre-determined target glucose 
level.57 SPRINT is a table-based version for easy large-
scale clinical testing.23,44 

Hence, while their technical approach is different, they all  
share a similar one method fits all approach. Specifically, 
each approach adapts its model to each patient using 
their specific fitting method. They then use that model  
and a control method to determine a control intervention 
of insulin and/or nutrition. In contrast, fixed clinical 
protocols and titration-based sliding scales are not this 
adaptable and report the need for significant modification  
by clinicians to get better patient-specific control,2,15 
increasing clinical burden50,51 and glycemic variability,23,24 
due to their one size fits all approach. Readers are  
directed to the review in reference 58 and other references for 
further details on the modeling.

Glycemic Control Problem and Performance Criteria
Glycemic control should reduce glucose levels to a 
safe glycemic band, minimize variability, and provide 
safety from hypoglycemia. Hence, basic performance 
requirements include:

1. Maintaining set maximum glycemic levels; 
2. Minimizing variability and/or maximize time in band;
3. Provide safety from hypoglycemia; and
4. Reducing mortality and other outcomes.

Efficacy is thus determined by a controller’s ability to provide 
these results across diverse cohorts in a one method fits all 
approach that does not increase clinical burden, yielding:

5. Adaptation to cohort; and
6. Clinically ease to use (low burden for results)

Criteria 1, 3 and 4 are reported by most studies. Criteria 2 
and 5 have only been addressed in some model-based 
studies.

Comparing Clinical Results and Control Efficacy
Results are presented for the model-based glycemic 
clinical control studies. In addition, van den Berghe et al.’s 
two studies,2,17 Krinsley,14,15 Thomas,20 and Chase et al.59 are 
presented as they reported mortality endpoints. The latter 
study is currently the only model-based control design  
to report mortality. 

To account for confounding differences in cohort and 
glycemic control, two metrics are proposed. Standardized 
mortality ratios (SMR) link mortality and cohort using the 
ratio of ICU mortality and the average reported APACHE II 
score risk of death. In this analysis, reported ICU mortality 
for those patients in the intensive treatment arm and with 
length of stay greater than 3 days is used.  

Similarly, glycemic control and variability can be assessed  
by the unit-less standard error ratio of the reported values 
for 95th percentile (±2s) blood glucose range and average 
blood glucose, SE95%, where tighter control provides a 
lower value. Specifically, taking the blood glucose range 
that encompasses 95% of measurements in mg/dL and 
dividing by the mean glucose value in mg/dL yields a 
fractional percentage relating the independent metrics of 
blood glucose variation and mean value. In simple terms,  
it is a percentage variation of the range between the 2.5th 
and 97.5th percentile measurements, and the blood glucose 
mean value, denoted SE95% in this paper. Note that dividing 
by 4 would yield the traditional standard error. Finally,
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using the blood glucose 95th percentile range allows 
the use of non-parametric counted range values if the 
distribution is not normal, as is often the case with positive 
valued concentrations, as seen in the results of Krinsley.  
 
Hence, these two metrics (SMR, SE95%) aggregate 4 criteria 
into 2, providing a potentially more useful insight into 
the interaction between control approach and clinical 
outcomes. The four criteria are: mortality rate achieved, 
APACHE II score, mean blood glucose achieved and 
the 95th percentile range of blood glucose values. These 
metrics capture performance in terms of mortality, mean 
glucose, and range of variability, along with differences 
in cohort via the APACHE II score risk of death (ROD). 
Thus, mortality and APACHE II ROD are combined to 
create a single cohort dependent metric for performance 
with respect to mortality. Similarly, blood glucose 95th 
percentile range and mean value are combined to obtain  
an equally unit-less measure of glycemic performance and 
tightness of glycemic control.

Results

Model-based Control Results
Plank et al.35 used MPC in 48-hour trials for post-cardiac 
surgery patients (mean APACHE II=10-12), achieving average 
glycemic levels of 110-123 mg/dL across three centres 
with 42-56% of time spent in a target band of 80-110 mg/dL, 
indicating a standard deviation of approximately ±18 mg/dL. 
Chee et al.25, 33,55 averaged 207 ± (18-54) mg/dL for 5 to 
9 patients in sub-48 hour trials focused primarily on full 
automation using CGMS. Finally, while not explicitly 
model-based, the GRIP decision support system,60 used 
a computerized estimator-predictor for 179 surgical ICU 
patients (average APACHE II=14), averaging 124 mg/dL 
with 78% in a 72-135 mg/dL target range. All of these 
methods used only insulin for glycemic control and left 
the provision of nutrition to local clinical standards.

Computerized Insulin+Nutrition control57,61 reported 
8 patient trials of 10-24 hours, which reduced glucose to  
the 72-110 mg/dL band within 5-hours and hit 94% of pre-
set target glucose values. SPRINT mimics this approach23,44 

and was implemented to enable large scale trials covering 
25,000 patient hours.59 The result was average glucose of 
106 ± 18 mg/dL with a cohort average APACHE II score 
of 21. Percentage time in band was: 72-110 mg/dL = 
61%; 72-126 mg/dL = 82%; 72-140 mg/dL= 90%. Finally,  
ICU mortality was reduced for patients with greater  
than 3-days of stay from 26% to 17% (p=0.04), as 
compared to a one-year retrospective cohort. The study 
is ongoing.

Clinical Glycemic Control Studies  
with Mortality Endpoint
Table 1 summarizes the results of all reviewed studies 
with a mortality endpoint, where, for example, SMR for 
vdB 2001 is simply the 4.6% final ICU mortality rate 
divided by the average APACHE II ROD of 8%, yielding 
SMR = 4.6/8 = 0.58 in column eight. Figure 1 plots  
SMR versus SE95% where the correlation line (r = 0.84) 
excludes the outlying result of,20 as it focused primarily 
on a web-based protocol implementation and failed to  
achieve a significant (>18mg/dL) change in average 
glucose levels over 500 patients. Potential variation due to 
errors in determining APACHE II score,62  or unreported 
glucose measurements leading to different glucose 
variation or average, are shown by ±15% error bars for 
mortality and additional reported points connected by 
dashed lines for ±5% glucose variation. These additional 
points and error bars are included primarily to visually 
illustrate the impact of potential variations on the overall 
trend seen. Finally, SMR < 0.85-1.0, as shown in the  
shaded area, represents an improvement over predicted 
values given the over-estimation of ROD reported in some 
studies for the APACHE II score.63,64

Average
APACHE II

(ROD%)

ICU
Mortality

Change (%)

Blood
Glucose
(mg/dL)

95th Percentile 
±2s Range
 (mg/dL)

Hypo
Rate (%) SMR Tightness

vdB, 2001 [2] 9 (8%) 8  4.6 102±20 80 5.2 0.58 0.77
vdB, 2006 [17] 24 (40%) 38.1  31.3 108±26 104 25.0 0.78 0.97
Thomas [20] 14.5 (20%)a 26  26b,d 112±23.5 94 4.0 1.30 0.84
Krinsley [14] 16 (25%) 20.9  14.8b 131±56c 128c ~0 0.6 0.96
SPRINT [59] 21 (40%) 26  17b 106±18 72 1.5 0.43 0.68

a =  Average ROD as APACHE II score sits on boundary of two levels in original definition.78

b =  Mortality change from a retrospective cohort rather than randomised trial
c =  Calculated directly from data in Figure 2 of Krinsley14 as it was not normally distributed and the normal standard deviation significantly over 

estimates the true 95% range of data.
d =  Mortality was not necessarily a main focus of the Thomas et al.20 study.

Table 1: Clinical results for clinical studies that report ICU mortality for patients with length of stay greater than 3 days, including standardized 
mortality ratio (SMR) using end of study mortality and tightness metric SE95%. Where vdb stands for van den Berghe et al. and Thomas for Thomas et al.
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Figure 1: Standardized mortality ratio (SMR) versus tightness of control 
represented as SE95%. All values are based on published results2,14,17,20,59 
where vdb stands for van den Berghe et al. and Thomas for Thomas et al. 
The line is fit excluding the outlying data from Thomas et al. The vertical 
error bars show 15% potential variation in reporting or determining 
average APACHE II scores.62 The average glucose variation due to not 
including all measurements is estimated at 5% and additional error bars 
are generated for van den Berghe et al. and Thomas et al. at these values 
with their center points connected by a dashed line, thus accounting 
for potential variation in the average glucose or glucose variation 
determined. 

Discussion
There is a great deal of glycemic variability in all the 
clinical results due to a combination of differences in:  
glycemic limit, cohort, control method, and implementation 
effectiveness. For example, van den Berghe et al. and 
Thomas et al. use the same protocol and similar glycemic 
limits, yet still obtained significantly different results 
in mortality and glycemic variability. In particular, the 
more critically ill the cohort, the more dynamic the 
patient evolution may be, and thus the more dynamic 
the changes in stress-induced insulin resistance and 
control. This issue can be further exacerbated in ad-hoc 
titration-based protocols by significant patient-specific 
clinical modification to improve control.2,14,17 Hence,  
direct performance comparisons for optimising treatment 
strategy are, at best, qualitative.

In particular, Table 1 shows van den Berghe et al. 
achieved average morning glycemia of 103-108 mg/dL 
using insulin alone, with cohorts ranging from 9 to 24 in 
APACHE II score. However, the higher APACHE II score, 
the potentially more dynamic the cohort, as seen in the 
larger variation in reported glucose values in both,17,20 as 
well as the 25% incidence of hypoglycemia17 compared to 

5% for the less ill cohort.2,20 It might be said that the two 
results of van den Berghe et al. show the impact of cohort,  
while the outlying result of Thomas et al. indicates a lack 
of effective control implementation, as their study only 
achieved an insignificant, <18 mg/dL change in average 
glycemia compared to their retrospective cohort. 

Similarly, Thomas et al. achieved similar average glycemic 
results to van den Berghe et al. with a cohort similar to that 
of Krinsley.14 The standard deviation or variability of their 
results were also similar after accounting for Krinsley’s 
lognormal (rather than normal, as reported) glucose 
distribution. However, as noted, the mortality outcome 
was very different, indicating unknown differences in 
either the method used or the efficacy of its application. 

More specifically, the differences behind the outlying 
mortality results of Thomas et al. are hard to diagnose 
from the data presented. However, the protocol of van den 
Berghe et al. relies on some level of clinical customization 
and intervention for some patients. Thus, their results might 
be very different given different choices. Secondly, reporting 
only morning glucose values may have less meaning if 
tight control is not maintained for any reason throughout 
the day. Finally, the initial average glycemic levels in the 
Thomas et al. study were quite low at 131 ± 32 mg/dL  
and thus already within the tight control range of Krinsley, 
which extended to 140 mg/dL indicating already good 
glycemic control relative to this study. In addition, the 
decreases to 119 ± 23 mg/dL and then 112 ± 22 mg/dL 
were relatively quite small and are all contained within 
one standard deviation. Hence, and perhaps most likely, 
it is possible that such relatively small glycemic reductions 
in this already relatively low glycemic range might not 
be expected to impact mortality. Therefore, for all these 
reasons, the Thomas et al. study was excluded from the 
trend line calculation, as the lower changes in mortality 
for the tightness of control could not be accounted for 
from the published data. However, given more data, 
the more complete proof of the metrics presented will 
be determined. Thus, this approach to comparison is 
primarily put forward as hypothesis generating rather  
than conclusive.

In contrast, model-based methods show much tighter control 
on average in the limited studies to date, when compared 
to the clinically derived protocols of van den Berghe et al. 
and Krinsley, as shown in Table 1. Specifically, the MPC 
and Insulin+Nutrition control approaches have effectively 
clamped blood glucose (~108 ± 18 mg/dL) with minimal 
variability. Similarly, the SPRINT protocol delivered a 
standard deviation of ±18 mg/dL, similar to the shorter
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MPC trial, yet with a cohort that was much more  
critically ill than for those studies reporting similar 
variability. This reduced variability using model-based 
control is also seen in the 0-2% incidence of hypoglycemia 
for model-based methods. Hence, model-based methods 
appear better able to match patient-specific demand  
and utilization over highly dynamic, critically ill patient 
cohorts, without large glycemic variation.

Hence, the question arises: What is the best measure of 
blood glucose control? Van den Berghe et al.2,16,17 used 
mean morning glucose, but did not include several daily 
measurements. This limitation hinders assessment of 
the actual glycemic variability and control performance. 
In contrast, several studies14, 15, 21, 22, 35, 60 reported average 
glucose over all treatment, even if the actual distribution  
was lognormal, thus skewing the standard deviation results. 

It is therefore proposed that time in a glucose band, such 
as 72 to 110 mg/dL, provides more complete information. 
In particular, maximizing time in a band tightens control, 
while still allowing variation within the band as patient 
condition evolves. In addition, using multiple bands, 
such as 72 to110 and 72 to140 or 72 to126 mg/dL, will 
also delineate the tightness as well as the fundamental 
distribution in terms of clinically relevant glycemic values. 
Time in band also equally weights any values within the 
band, rather than penalizing values small distances away 
from a specific target, thus allowing flexibility in control  
to within clinically acceptable ranges rather than to specific 
target values, as in previous studies. In support of this 
fundamental proposal, Figure 1 indicates that the tighter  
the control (smaller SE95%), the lower SMR obtained. 

Further support for limiting glycemic variability to get 
better outcomes is found in studies linking excessive 
pro-inflammatory immune response to observed insulin 
resistance and hyperglycemia, as well as reduced 
bactericidal and immune system effectiveness.12,65,66 In 
particular, this inflammatory cascade has been linked to 
decreased insulin sensitivity, which is a primary cause of 
hyperglycemia in critical care.12,67,68 Other studies indicate  
that augmenting certain proteins can have a positive effect 
on carbohydrate metabolism and insulin sensitivity.69 
There are also emerging results linking repeated exposure 
to elevated blood glucose to increased cellular level 
damage.70-73 Note that there are some recent studies 
that indicate that glycemic variability is not necessarily 
associated with increased inflammation and potentially 
related micro-vasculature damage,74 however these results 
are based on the DCCT study data, which may not have 
had frequently enough sampled data to capture glycemic 
variability as it would affect critical care patients. 

However, overall, there is a growing body of evidence 
to support minimizing exposure to elevated blood glucose 
in critical care by minimizing variability under glycemic 
control – at any reasonable average blood glucose level. 
 
However, given the limited data available to create  
Figure 1 this result should be taken as hypothesis generating. 
While the metrics in Figure 1 aggregate clinical results and 
control criteria into a more readily visualized format, 
normalizing out differences in cohort or glycemic limit, 
they do have limitations. A particular limitation is the 
implicit assumption of a relatively low, clinically relevant 
average glucose level in analysing the trend. For example, 
very tight control to a high glycemic average of 150 to 
180 mg/dL would yield a low SE95% value, but (potentially) 
high SMR due to poor control not reducing the higher 
average values and thus not affecting mortality. This 
case would result in a point outside the trend of tighter 
control producing reduced mortality, as shown in Figure 1. 
Hence, given that hyperglycemia is strongly correlated 
with mortality in a variety of studies,2, 16, 38 the tightness 
metric presumes that the clinical control protocol being 
evaluated achieved a clinically relevant average glycemic 
value based on this current evidence.

Other limitations include the use of average APACHE II 
scores, although adjusting for reported distribution did not 
affect the plot. The APACHE II risk of death can also be 
overstated by approximately 15%,62,63 as shown by the grey 
area in Figure 1, where a value below the grey area covering 
the SMR range of 0.85 to 1.0 would indicate an improvement 
over predicted values for that cohort. Additionally, not all 
studies include every glucose measurement, potentially 
understating the glucose variability, particularly if longer 
measurement intervals are used.23,26 For example, these 
same protocols were simulated23,24 with good mean value 
correlation to published results, but significantly larger 
variability, showing the potential impact of reporting all 
the measurements. Hence, significant data is missing for a 
complete picture at this time, as approximated schematically 
by the additional error bars and points in Figure 1 for 
studies that don’t report all glucose measurements, and  
the single error bars in SMR for those that do.

The use of the 95th percentile metric, using either standard 
deviation or non-parametric counted range, is a useful 
measure of the tightness of glycemic control, although 
not necessarily unique. Several other potential measures 
exist already, such as MAGE (mean average glycemic 
excursion)75 or the peak/range of blood glucose.76 
However, both of these metrics require all glucose values to 
be reported, rather than just morning averages as in the 
van den Berghe et al. studies or the study by Thomas et al.
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In addition, the MAGE metric is effectively equivalent 
to the standard deviation metric, and the peak and 
range of blood glucose are highly correlated to the mean  
glucose value,76 adding no additional information to the 
metric used. In addition, reporting multiple time in band 
percentages can compactly illustrate both the average 
glucose levels and fundamental distribution of glycemic 
values. Finally, more advanced metrics, such as the risk  
and Markov-based high and low blood glucose indices 
presented by Kovatchev et al.,77 introduce significant added 
information. However, this metric is based on continuous 
sensing not used in these studies and requires the full 
blood glucose data to be reported and made available, 
which was not possible for all studies used in this paper.

Of note in this discussion is that there was no correlation 
between the average blood glucose achieved and mortality 
(r = .04) or the 95th percentile range (r = .68). In addition, 
similar results are obtained comparing these values to 
SMR (r = .06 and r = .54) respectively. It is only in their 
combination in defining the tightness metric, SE95%, that 
the there is a significant correlation with mortality or  
SMR for the blood glucose mean and variability achieved 
across these independent studies. The specific reason for 
the lack of correlation is that outlying values for at least 
one study, excluding in all cases the results of Thomas et al., 
result in poor correlation. This result further supports the 
use of these two metrics for this type of analysis across 
very different clinical studies.

Finally, one other potential metric which is not commonly 
used is readily available from the reported data. 
Specifically, the rate of hypoglycemic events, shown as 
a percentage of patients in Table 1, is an independent 
variable, as no significant correlation was seen between 
this metric and the 95th percentile metric used (r < 0.5) 
to illustrate variability. This result suggests that it could 
be used as an added metric. This value would indicate 
variability of glucose levels, but only accounts for one  
side of the equation, specifically low levels. When plotted 
versus SMR, this one-sided value is correlated to SMR 
with r = 0.87. If one then assumes that more hypoglycemic 
events might lead to increased mortality, and thus reduced 
SMR, a further derived metric can be created. Specifically, 
correlating the following revised metric to SMR:

where Hypo is the fractional representation of the rate 
of hypoglycemic events per patient, gives a correlation 
coefficient of r = 0.98, as shown in Figure 2. This high 

value, excluding the result of Thomas et al., further 
illustrates the hypothesized trend between tightness of 
control and mortality. However, while the fit is tight, the 
assumption of increased hypoglycemia and mortality 
is not proven and more data is required to validate this 
metric. Overall, Figure 2 further illustrates the potential 
trends and possible metrics that might arise on further 
examination and the need to begin developing consensus 
on this topic.

Figure 2: Correlation of SMR and modified 95th percentile standard error 
metric, where all abbreviations are the same as in Figure 1.

Overall, the results argue for more examination of metrics 
for assessing control effectiveness and allowing useful 
comparison across studies. The metrics presented here are 
only proposed for hypothesis generation and discussion, 
and likely do not represent a conclusive performance 
metric. However, these results do begin to suggest that 
tighter, more perfectly clamped control will provide better 
mortality results, particularly for more critically ill cohorts. 
Hence, metrics such as time in band, using all control 
measurements should be considered in future studies.

Conclusions
Hyperglycemia in critical care has a significant impact 
on patient mortality, outcome, and cost. Tight regulation 
can significantly reduce these negative outcomes, but 
consistently achieving it, as an expected outcome of care,  
remains clinically elusive. In particular, there is no standard 
definition of tight control and what level is necessary for 
optimal outcomes. Therefore, it is very difficult to determine 
the best protocol in terms of results and clinical effort. 
This overview has examined the current performance of 
clinical glycemic control studies in critical care focusing on



89

Overview of Glycemic Control in Critical Care: Relating Performance and Clinical Results Chase

www.journalofdst.orgJ Diabetes Sci Technol  Vol 1, Issue 1, January 2007

the differences in emerging model-based approaches that 
utilize a variety of computational and emerging sensor 
technologies, and current ad-hoc clinical methods. With 
limited published studies it is very much an emerging 
field rather than a mature area of research.

Specific examination of clinical results shows that model-
based control can provide tighter, more adaptive control 
than existing clinical protocols – a one method fits all 
approach. A hypothesis generating approach to evaluating 
glycemic control in critical care is proposed utilizing 
standardized mortality ratios and 95th percentile standard 
error to enable better comparison across cohorts and 
control methods. Analysis indicates that tighter control 
may lead to better outcome. Given that tight control can 
be obtained consistently using frequent measurement and 
model-based methods argues for the greater application of 
these technologies in clinical research and practice. More 
specifically, these results all support the eventual use of 
adaptive model-based methods, instead of ad-hoc one  
size fits all approaches, to provide the customized, patient-
specific and eventually automated intervention required  
to treat the highly dynamic, hyperglycemic patients found  
in broad intensive care cohorts.
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